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Abstract

We empirically examine the sources of aggregate tail risks. Using data on sectoral

employment from 1947 to the present, in conjunction with a multi-industry model

of the type introduced in Long and Plosser (1983), we calculate the contribution of

industries’ disturbances to aggregate output and employment tail risks. Our main

finding is that durable goods manufacturing accounts for a plurality of measured tail

risk. A pure statistical model of industry-level employment growth understates the

importance of the construction and finance, insurance, and real estate industries.

1 Introduction

Aggregate activity exhibits tail risks. That is, the distribution of aggregate fluctuations

displays both negative skew and has fatter tails than that of a normally distributed ran-

dom variable. Understanding these tail risks are important: As forcefully argued by Barro

(2009), higher-order moments of aggregate activity are critical in assessing the utility cost

of macroeconomic fluctuations. Moreover, allowing for non-normal innovations are of first-

order importance in forecasting; see for example, Cúrdia, Del Negro, and Greenwald (2014).

In this paper, we present an accounting framework with which to decompose the sources of

macroeconomic tail risks, and apply this framework to data on industry-level employment

growth rates. Our contribution is to empirically investigate whether these higher moments

have origins in particular sectors.

∗Atalay: University of Wisconsin-Madison; Drautzburg: Federal Reserve Bank of Philadelphia. The

views expressed herein are our own views only. They do not necessarily reflect the views of the Federal

Reserve Bank of Philadelphia, the Federal Reserve System, or its Board of Governors.
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We begin the paper, in Section 2, by exploring the distribution of industries’ em-

ployment growth rates. As we document, there are substantial differences in the extent to

which industries’ employment growth rates depart from the normal distribution. A few

sectors— e.g. Education and Health and Local Government—have growth rates that cannot

be statistically distinguished from the normal distribution. For other industries— most

notably Nondurable Manufacturing, Transportation, and Business Services—employment

growth rates are highly kurtotic and negatively skewed. According to a simple accounting

exercise, based on expansions of the third and fourth moments of the sum of industries’ em-

ployment growth rates, durable manufacturing and business services employment together

account for almost half of aggregate employment tail risk.

Due to input-output linkages, productivity and preference shocks in an individual

industry impact employment in other industries. In Section 3, we apply the approach intro-

duced in Foerster, Sarte, and Watson (2011) to recover the underlying productivity shocks

from data on industries’ employment growth rates, accounting for the correlation in activity,

across industries, that is induced by input-output linkages. We then use the distribution of

filtered productivity shocks to perform two accounting exercises, each highlighting different

aspects of industries’ contributions to aggregate fluctuations’ departures from normality. In

the first exercise, we compute the contribution of the independent component of industry-

specific productivity shocks to aggregate skewness and kurtosis. For a given skewness or

kurtosis, industries that have high-variance, or industries that comprise a large fraction of

aggregate output, have a larger contribution to aggregate tail risk. A second measure cap-

tures not only how volatile industries’ productivity shocks are, but also how correlated the

industry’s productivity shocks are to the productivity shocks in other industries. In line

with the statistical analysis in Section 2, not only Durables Manufacturing employment but

also Durables Manufacturing productivity growth is identified as a key contributor to aggre-

gate employment tail risk. For other sectors, however, the results change significantly: Our

benchmark calibration also identifies the productivity shocks in the construction industry

as important, and also, to a lesser degree, those in the FIRE industry. In contrast, Busi-

ness Services productivity shocks are not found to have a significant effect. We show that

even after accounting for input-output linkages, industry-specific shocks exhibit significant

comovements that are important for understanding the aggregate behavior.

Based on our calibration results we ask two questions: (1) What drives the differ-

ences between the inferred productivity shocks and employment growth? (2) To what extent

does a common factor account for aggregate tail risks? We find for (1) that when consumers’

demand and labor supply elasticities are low, inferred productivity growth resembles em-

ployment growth more closely. The relative importance of sectors is, however, not invariant
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to these preference parameters as the precise effects depend on sectoral factor shares. Re-

garding (2), the estimated relevance of a common factor is sensitive to our parameterization

of consumers’ preferences. When the intratemporal elasticity of substitution and of labor

supply are relatively low, a single factor explains both aggregate employment growth well

over time and also captures the kurtosis of employment growth well. Skewness is not as

easily captured by an aggregate factor: several industries explain the substantial residual

skewness contributions in the structural decomposition.

This paper contributes primarily to the literature, initiated by Long and Plosser

(1983), which hypothesizes that localized, firm-specific or industry-specific disturbances

shape aggregate fluctuations. Our paper is closest to Carvalho and Gabaix (2013) and

Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015). The latter paper contains a theoretical

exploration of the relationship between the distributions of industry-specific productivity

shocks and aggregate output. The authors provide necessary and sufficient conditions for

idiosyncratic, industry-specific productivity shocks to engender macroeconomic tail risks.1

Our paper also closely relates to Carvalho and Gabaix (2013). This paper empirically demon-

strates that the long-run evolution of aggregate volatility, both the great diversification and

its reversal, is attributable to long-run changes in sectoral composition of the economy.

Unlike Carvalho and Gabaix (2013), which focuses on the forces that shape the standard

deviation of GDP growth, we consider aggregate volatility that more specifically relates to

large economic downturns.

In ongoing work, we exploit changes in the input-output structure over the post-war

period to assess whether the documented tail behavior can be attributed to economic fun-

damentals via changing input-output linkages. Similar to Carvalho and Gabaix (2013), we

aim to explain the aggregate tail-behavior with economic fundamentals, namely changes in

the industry structure and industry linkages.

2 Statistical Decompositions

Our paper applies data from the BLS Current Employment Statistics program. This

dataset contains data on industries’ employment, for all non-farm industries, for each quarter

between 1947 and 2014. We add data on agricultural employment by interpolating annual

agricultural employment growth from the Bureau of Economic Analysis. We then remove

an Hodrick-Prescott trend computed with the standard quarterly smoothing parameter of

1A necessary condition for kurtotic aggregate fluctuations, in Acemoglu, Ozdaglar, and Tahbaz-Salehi, is a
skewed size distribution. Earlier papers introduce models in which, as a result of extreme complementarities
in production, idiosyncratic shocks to equally sized firms yield fat-tailed aggregate output distributions; see
for example Bak et al. (1993).
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1,600 from the log industry employment and aggregate the data up with time-varying weights

based on the original employment series.2

Table 1 presents the standard deviation, skewness, and excess kurtosis of quarter-over-

quarter employment growth, both for each individual industry in our sample, and for the

economy as a whole. There are substantial cross-industry differences in the distribution of

employment growth. Agriculture, Mining/Petroleum Extraction, Construction and Durable

Manufacturing have high-variance employment growth. Growth for most industries displays

excess kurtosis and negative skewness, with Mining/Petroleum Extraction and Information

with the highest excess kurtosis.

Industry sdi Si Ki

Agriculture 0.021 -1.77* 9.09*
Mining/Petroleum Extraction 0.026 1.30 18.49*
Construction 0.015 -0.18 1.38*
Durable Manufacturing 0.017 -0.62* 2.69*
Nondurable Manufacturing 0.007 -1.50* 7.58*
Wholesale 0.005 -0.42* 1.03*
Retail 0.005 -0.34* 0.28
Transport. 0.008 -0.54* 0.95*
Utilities 0.007 -0.47 3.05*
Information 0.012 0.69 26.60*
FIRE 0.003 -0.76* 1.27*
Business Services 0.006 -1.21* 2.76*
Education/Health 0.003 -0.51* 2.10*
Leisure and Accommodation 0.005 0.04 1.62
Other Services 0.004 -0.56* 1.14*
Federal Government 0.011 -0.68 9.96*
State Government 0.005 -0.16 2.25*
Local Government 0.004 -0.04 4.03*
Total 0.006 -0.53* 2.70*

Table 1: Employment growth rate standard deviation, skewness, and excess kurtosis.
Notes: Stars indicate statistical significance at the 5 percent level, resulting from boot-strapped confidence
intervals under iid sampling.

In each quarter, aggregate employment growth is the sum of employment growth

in each of the economy’s constituent industries. As a result the skewness and excess of

kurtosis of aggregate employment growth equals the following combination of the moments

2Figure 3 in the Appendix shows in quantile plots that this procedure does increase measured kurtosis
slightly , but the quality of our approximation is equally good for the raw or for the data detrended at the
industry level, as shown in the lower panels for our baseline calibration.
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of the distribution of industries’ employment growth
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∑
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In Equations 1 and 2, Stot
i measures the contribution of industry i to aggregate employ-

ment growth skewness.

If industry employment growth rates are independent of one another, the contribu-

tion of industry i to aggregate skewness and kurtosis equals

S
d
i ≡

ω3
i (Vi)

3/2

V3/2
Si and K

d
i ≡

ω4
iV

2
i

V2
Ki, (3)

respectively, where Vi, Si, and Ki are the variance, skewness, and kurtosis of the em-

ployment growth rates of industry i, ωi is the employment share of industry i, and V is the

variance of aggregate employment growth. For a given skewness or kurtosis, high-variance,

high-employment-share industries contribute relatively more to high aggregate employment’s

higher-order moments. The sum of Sd
i across industries would equal aggregate employment

skewness if employment growth rates were independent. According to these measures em-

ployment growth in durable goods manufacturing accounts for roughly one fourth of aggre-

gate employment’s skewness and one half of its excess kurtosis.

If industry employment growth rates are correlated, moments of the distribution of

aggregate employment will also depend on the correlation of industries’ employment growth

rates. To capture the contribution of these correlated growth rates, we define a second set

of measures:3

S
tot
i =

∑

j,k,l

1

3
· (1i=j + 1i=k + 1i=l) · ωjωkωl ·

E [∆ logNj∆ logNk∆ logNl]

V3/2
, (4)

and

K
tot
i =

∑

j,k,l,m

1

4
(1i=j + 1i=k + 1i=l + 1i=m) · ωjωkωlωm ·

E [∆ logNj∆ logNk∆ logNl∆ logNm]

V2

(5)

− 3
κ(i,Σ)

V2
,

3We assume that industry employment growth has been demeaned in what follows.

5



where V = E[(
∑

i ωi∆ logNi)
2] is the variance of aggregate employment growth and the

constant term κ(i,Σ) sums up to V.4 The idea behind these measures may be best explained

by an analogy with a variance decomposition: In the presence of non-zero covariance terms,

a variance decomposition is exact only if it includes covariance terms. In our methodology,

we would attribute the covariance between industries I and J with weights 1
2
and 1

2
to the

variance contribution from industry I and J . For higher-order moments, we assign weights

to industries according to how often an industry’s contribution shows up in the skewness or

kurtosis component. Put differently, when the third moment is based on the second power

of industry I’s employment growth and the first power of industry J ’s, we assign weights 2
3

and 1
3
and we would assign equal weights to industries I, J,K if the term in question were

E[∆ logNI∆ logNJ∆ logNK ].

The two measures are presented in the second and fourth columns of Table 2. Over-

all, the three industries that contribute most to aggregate tail risk are durable goods, non-

durable goods, and construction. A number of services industries including business services

also contribute sizable amounts to aggregate kurtosis and business services matters also for

aggregate skewness. The most pronounced difference, among the two measures, is observed

for the durable goods industry, pointing to an important correlation between the industries

employment growth rates. In the next section, we relate this correlation both to correlated

shocks and input-output linkages.

3 Structural Decompositions

Employment in industry i may fluctuate due to events that can be traced back to

other industries in the economy. Productivity shocks in industry j will—to the extent that

industries i and j are related through input output linkages—affect employment in industry

i. To take these induced correlations into account, we will recover industries’ productivity

shocks from data on industry employment, and then compute the contribution of industries’

productivity shocks to aggregate employment volatility.

4The constant term is is given by

κ(i,Σ) ≡ Σ2
i,i +

∑

j

(

1i6=jΣi,iΣj,j +
∑

k

(

1i6=kΣj,jΣi,k + 1j 6=kΣi,iΣj,k +
∑

ℓ

1i6=j1k 6=ℓΣi,jΣk,ℓ

))

=
∑

j

(
∑

k

(
∑

ℓ

Vi,jVk,ℓ

))

. (6)
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Industry Sd Stot

Agriculture -0.01 0.01
Mining/Petroleum Extraction 0.00 0.00
Construction -0.00 -0.05
Durable Manufacturing -0.28 -0.21
Nondurable Manufacturing -0.02 -0.06
Wholesale -0.00 -0.02
Retail -0.00 -0.04
Transport. -0.00 -0.03
Utilities -0.00 -0.00
Information 0.00 -0.02
FIRE -0.00 -0.02
Business Services -0.01 -0.06
Education/Health -0.00 -0.01
Leisure and Accommodation -0.00 -0.03
Other Services -0.00 -0.01
Federal Government -0.00 -0.01
State Government -0.00 0.01
Local Government 0.00 0.02
Total -0.33 -0.53
Actual (employment) -0.53

Kd Ktot

0.01 0.05
0.01 0.11
0.01 0.21
1.92 1.23
0.02 0.32
0.00 0.07
0.00 0.12
0.00 0.14
0.00 0.03
0.00 0.12
0.00 0.03
0.01 0.12
0.00 0.04
0.00 0.06
0.00 0.02
0.01 0.04
0.00 -0.01
0.00 0.01
1.98 2.70

2.70

Table 2: Statistical decompositions of employment growth skewness and kurtosis.
Notes: Due to approximation error, differences between the industry total and actual employment growth
may exist. Rescaled employment is scaled so that average industry-wide employment shares correspond to
the model-implied shares.
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3.1 Model

3.1.1 Environment

The model broadly follows that in Foerster, Sarte, and Watson (2011), with minor

modifications to allow for consumer durables. The aim of this model is to recover industries’

productivity shocks from data on industry employment.

The economy consists of N perfectly competitive industries and a representative

consumer. The consumer supplies labor and consumes output produced by each of the

industries.

U0 = E0

∞∑

t=0

βt






log





[
N∑

J=1

ω
1

σ

J (δCJ
CtJ)

σ−1

σ

] σ
σ−1



−
φ

φ+ 1
N

φ+1

φ

t






(7)

In Equation 7, ωJ represents the importance, in the consumer’s preferences, of the good pro-

duced by industry i at time t. δCJ
∈ (0, 1] captures the flow benefit of durables consumption.

The production function is given by:

QtJ = ztJ

(
Kt−1,J

(1− µJ)αJ

)αJ (1−µJ )( NtJ

(1− µJ) (1− αJ)

)(1−αJ )(1−µJ )(MtJ

µJ

)µJ

(8)

MtJ =
∏

I

(
Mt,I→J

ΓM
IJ

)ΓM
IJ

(9)

In the production function MtJ denotes total intermediate inputs, which are, in turn, a

Cobb-Douglas aggregate of industry-specific inputs. NtJ and KtJ are labor and capital

inputs, respectively.

Capital is industry-specific and each Kt,J follows the following law of motion:

Kt,J = XtJ + (1− δK)Kt−1,J (10)

XtJ =
∏

I

(
Xt,I→J

ΓX
IJ

)ΓX
IJ

(11)

Similar to input bundlesMtJ , total industry investment consists of a Cobb-Douglas aggregate

of industry-specific inputs.

The industry-specific resource constraints are given by:

QtJ = − (1− δCJ
)Ct−1J + Ct,J +

N∑

I=1

[Mt,J→I +Xt,J→I ] (12)
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Each industry’s output time t output can either be consumed or purchased by the other

industries in the economy.

Labor market clearing states that total labor supply equals the total of all labor

demanded by the N industries:

Nt =

N∑

J=1

NtJ (13)

Last, we need to specify beliefs and the law of motion for the exogenous productivity

process. To minimize the distributional we assume that agents have rational expectations

and that industry-specific (log) productivity follows a random walk:

Et[log zt+1,J ] = log zt,J (14)

3.1.2 Equilibrium productivity and employment implications

To solve the model we focus on the social planner’s constrained maximization problem:

Since this economy satisfies the conditions of the Welfare Theorems, the planner’s solution

will correspond to an equilibrium outcome. Equations 7 to 14 describe the model.

We solve the model using a first order approximation along the balanced growth path.

Based on the first order approximation, we reduce the equilibrium conditions analytically to

a system in prices, productivities, and endogenous state variables only. This reduced system

is of full rank and can be solved with the standard Blanchard-Kahn algorithm. With durable

consumption, the state variables include consumer durables. Without durable consumption,

the only endogenous state variables are the industry-specific capital stock. For ease of

exposition, we focus on this case in this section. Appendix A provides a detailed derivation

and characterization of the equilibrium.

In the case without consumer durables the law of motion for capital is a simple

multi-sector version of the standard RBC-model. Specifically:

k̂t ≡







k̂t,1
...

k̂t,N






= Πkk







k̂t−1,1

...

k̂t−1,N






−Πkz







ẑt,1
...

ẑt,N







(15)

The corresponding policy function for labor supply takes the following form:

N̂t ≡







N̂t,1

...

N̂t,N






= ΠLk







k̂t−1,1

...

k̂t−1,N






− ΠLz







ẑt,1
...

ẑt,N







(16)
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To back out productivity we initialize the economy on the balanced growth path

and then back our productivity growth from employment growth in each industry using the

following relationship:

∆ẑt ≡







∆ẑt,1
...

∆ẑt,N






= Π−1

Lz







∆N̂t,1

...

∆N̂t,N






−Π−1

Lz̺







∆N̂t−1,1

...

∆N̂t−1,N






−Π−1

LzΞ







∆ẑt−1,1

...

∆ẑt−1,N






, (17)

where ∆ẑt,J denotes the log-deviation of productivity growth in industry J from its value

along the balanced growth path and similarly for employment growth. The matrices Πz, ̺,Ξ

are characterized in Appendix A.

Finally, we provide a counterfactual decomposition of aggregate employment due to

shocks to industry J by feeding a counterfactual productivity growth series into the system

given by (15) and (16), where we set productivity shocks in industries I 6= J to zero. These

industry-specific contributions are weighted with the model-implied employment shares along

the balanced growth path.

3.1.3 Calibration

We calibrate the technological parameters in our economy using industry-level infor-

mation from the BEA. For the ΓM
IJ and ωJ parameters, we use data from the post-WWII

Input Output tables to obtain the different ΓM
IJ,t and ωJ,t and then average over time to get

ΓM
IJ and ωJ . At present, we abstract from consumer durables and set δCJ

= 1 for all J . To

construct ΓK
IJ , we get a first estimate of ΓK

IJ from the Capital Flows Table.5 We set the

common depreciation rate for capital is set to 2% per quarter. For the factor share αJ , µJ

parameters, we similarly use data from the BEA Industry accounts, taking the ratio of labor

compensation and intermediate expenses to gross output, and then average over time.6

We explore a range of reasonable preference parameters. Our choice of the quarterly

discount rate is standard: β = 1.05−1/4. We consider macro labor supply elasticity φ in

{1, 3} and values for the intratemporal preference elasticity σ to lie in {0.5, 0.75}. Note that

the latter calibration differs from calibrations of σ > 1 in the International Trade or New

Keynesian literatures that focus on substitution across varieties of the same good. Our two

values for σ span the benchmark estimate of from Atalay (2014). Additionally, we consider

5Following Foerster, Sarte, and Watson (2011), to account for the substantial maintenance and repair
expenditures that McGrattan and Schmitz (1999) report, we add a 25% share to the diagonal entries of the
ΓK matrix.

6In future iterations, we should exploit the time variation by allow the above parameters to be slowly,
deterministically moving over the sample period.
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the Cobb-Douglas calibration of σ = 1 used in Foerster, Sarte, and Watson (2011).

3.2 Main results

Overall, our model does a good job at replicating aggregate employment dynamics. Because

we approximate overall employment growth with a model which features constant employ-

ment shares that do not match those in the data exactly, the employment series implied

by our model does not reproduce that in the data perfectly. Figure 1 shows the quality of

the approximation. While the plot is for the case of σ = 0.75, φ = 1, the quality of the

approximation is not sensitive to that choice. The correlation of model-implied with actual

employment is 0.97, corresponding to an R2 of about 0.93. The model approximation does,

however, overstate the incidence of large shocks somewhat. As we will see, this results in a

slightly higher model-implied kurtosis than we observe in the data.
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Figure 1: Model-implied employment based on filtered productivty shocks versus actual
employment

3.2.1 Implied correlation and IO structure

The two key determinants of aggregate skewness and kurtosis in our model are whether

shocks comove and what the sectoral linkages are. Figure 2 visualizes these characteristics

for our model economy.

If filtered sectoral productivities were independent, employment implied by productivity

growth originating in different sectors would be uncorrelated. The correlation structure in

Figure 2(a–c shows, however, that this is not the case: We should expect much of the ag-

gregate kurtosis to stem from correlated industry-specific productivity shocks. The Figure

shows that shocks within the secondary and within the tertiary sector tend to be strongly
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Correlation of productivity-implied employment
(a) σ = 0.75, labor supply elasticity φ = 1 (b) σ = 0.5, labor supply elasticity φ = 1
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(c) σ = 0.75, elastic labor supply φ = 3 (d) Industry linkages ΓMµ+ ΓK(1− µ)α
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Figure 2: Productivity correlation and strength of IO linkages
Note: Panels (a) through (c) visualize the correlations for five categories: Correlations below -0.4 are shown

in dark blue, correlations in [−0.4,−0.1] in light blue, correlations below 0.1 in absolute value in white, and

correlations above +0.1 and +0.4 in light and dark red, respectively. Panel (d) shows the linkages for five

different categories ranging from below 0.03 (lightest shade of red) to above 0.25 (darkest shade of red).

12



positive correlated within sector, but negatively correlated with industries outside their own

broad sector. Correlations are more positive with a higher intratemporal elasticity of sub-

stitution or more elastic labor supply.

How industry-specific productivity shocks propagate depends on the input-output struc-

ture of the economy. The input-output structure, Figure 2(d), shows the strongest linkages

between construction, both manufacturing sectors, and wholesale as well as between business

services and FIRE as originating industries to most downstream industries with the excep-

tion of manufacturing and government services. The strength of the input-output linkages, in

conjunction with industries’ weights in consumers’ preferences, determine the Hulten (1978)-

type gross sales weights. These weights summarize the importance of industries’ productivity

shocks.

3.2.2 Skewness and kurtosis

Given the filtered productivity and the employment implied by equations (15) to (17),

we can now decompose aggregate employment tail risk that is due to productivity shocks

from each industry:7

S
tot
i =

∑

j,k,l

1

3
· (1i=j + 1i=k + 1i=l) · y

∗

j y
∗

ky
∗

l ·
E [∆ log zj∆ log zk∆ log zl]

V3/2
(18)

K
tot
i =

∑

j,k,l,m

1

4
(1i=j + 1i=k + 1i=l + 1i=m) · y

∗

jy
∗

ky
∗

l y
∗

m ·
E [∆ log zj∆ log zk∆ log zl∆ log zm]

V2

(19)

− 3
κ(i,Σ)

V2
,

where the constant term κ(i,Σ)
V2 sums to one.8

Table 3 presents the results of the structural decomposition. Note that skewness and

kurtosis measures that assume independent shocks fail dramatically at capturing overall

skewness and kurtosis: The implied aggregate skewness is 0.29, compared to -0.53 in the

7We assume that the industry shocks are demeaned in what follows.
8κ(i,Σ) is given by

κ(i,Σ) ≡ Σ2
i,i +

∑

j

(

1i6=jΣi,iΣj,j +
∑

k

(

1i6=kΣj,jΣi,k + 1j 6=kΣi,iΣj,k +
∑

ℓ

1i6=j1k 6=ℓΣi,jΣk,ℓ

))

=
∑

j

(
∑

k

(
∑

ℓ

Vi,jVk,ℓ

))

. (20)
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data, and the implied excess kurtosis is 0.34, compared to 2.70 in the data. We therefore

focus on the decomposition that allows for cross-sectional dependence in productivity shocks.

Industry Sd Stot

Agriculture -0.00 0.01
Mining/Petroleum Extraction 0.00 0.00
Construction 0.31 -0.55
Durable Manufacturing 0.03 -0.01
Nondurable Manufacturing 0.00 -0.03
Wholesale 0.00 0.03
Retail 0.00 -0.01
Transport. 0.00 0.01
Utilities -0.00 -0.03
Information 0.00 -0.01
FIRE -0.02 -0.16
Business Services 0.00 0.00
Education/Health -0.00 0.01
Leisure and Accommodation -0.00 -0.01
Other Services 0.00 0.01
Federal Government -0.00 -0.00
State Government -0.00 0.02
Local Government -0.03 0.07
Total 0.29 -0.66
Actual (employment) -0.53

Kd Ktot

0.00 0.08
0.00 0.22
0.31 2.14
0.02 1.56
0.00 0.38
0.00 0.18
0.00 0.07
0.00 0.06
-0.00 -0.04
0.00 0.10
0.00 -0.60
0.00 0.21
0.00 -0.04
0.00 0.00
0.00 0.02
0.00 -0.07
0.00 -0.45
0.01 -1.14
0.34 2.70

2.70

Table 3: Structural decompositions of employment growth kurtosis, σ = 0.75
Notes: Due to approximation error, differences between the industry total and actual employment growth
may exist. Rescaled employment is scaled so that average industry-wide employment shares correspond to

the model-implied shares.

The model-implied skewness and kurtosis overstate that in the data somewhat when

allowing for cross-sectional dependence: Total skewness is -0.66, compared to -0.53 in the

data, and excess kurtosis is 2.70, equal up to two digits to the kurtosis found in the data. The

approximation error is related to the fact that we use constant, model-implied weights. As

Figure 1 shows, this leads to counterfactual large employment growth during some episodes.

A few industries are key for explaining aggregate skewness and kurtosis. According

to the model, the largest contributor to aggregate skewness in employment growth is the

construction industry that explains most of aggregate skewness. FIRE further lowers the

skewness, partly offset by the positive skewness of state and local governments. Construction

together with durable manufacturing also has the largest absolute contribution to model-

implied kurtosis. Also extractive industries and business services contribute to a positive

kurtosis. Note that these industries together are also broadly the industries with the largest

input-output linkages according to Figure 2(d). State and local governments along with the
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FIRE industry are found to lower the overall kurtosis.

To put these results in perspective, Tables 4 and 5 compare the contribution of different

industries in the model and in the data. For the baseline calibration of σ = 0.75, φ = 1,

the observed (negative) skewness is largely explained by construction, as well as FIRE. In

the statistical decomposition, in contrast, durable manufacturing is much more important,

along with other secondary industries and business services. For the kurtosis, the results

of the structural decomposition roughly agree with the statistical decomposition for busi-

nesses services and both manufacturing sectors. The statistical decomposition understates,

however, the importance of the construction and FIRE industries as well as state and local

governments.

Elasticity of substitution σ 0.75
Elasticity of labor supply φ 1
Industry Stot

Agriculture -0.8
Mining/Petroleum Extraction -0.2
Construction 83.7
Durable Manufacturing 2.2
Nondurable Manufacturing 5.0
Wholesale -4.2
Retail 1.7
Transport. -1.8
Utilities 4.5
Information 1.9
FIRE 24.5
Business Services -0.7
Education/Health -1.5
Leisure and Accommodation 1.4
Other Services -1.4
Federal Government 0.4
State Government -3.7
Local Government -10.7
Total 100.0
Actual (employment) 79.9

0.75
3
Stot

-0.4
-0.4
3.9
54.8
6.4
3.1
1.2
0.6
3.3
2.0
20.0
2.6
-0.3
1.1
-0.0
2.9
0.4
-1.2
100.0
79.9

0.5
1
Stot

0.1
-0.5
-10.6
5.6
3.8
-0.8
1.3
0.1
6.0
1.5
44.6
1.0
1.4
2.2
-0.4
2.5
12.2
30.0
100.0
81.2

0.5
3
Stot

0.0
-0.7
-20.3
58.1
5.7
4.7
1.3
0.6
3.4
1.9
20.5
2.3
0.9
1.5
-0.3
2.8
5.2
12.5
100.0
81.2

1
1
Stot

-1.5
0.4
185.5
25.9
5.7
-4.5
1.5
-3.9
-0.6
2.2
-34.5
-2.4
-5.3
-0.7
-3.3
-2.2
-17.5
-44.8
100.0
78.5

1
3
Stot

-0.8
-0.1
38.7
51.1
6.8
1.6
0.9
0.2
2.5
2.1
10.9
2.5
-2.0
0.2
-0.1
2.9
-4.2
-13.2
100.0
78.5

Data
Stot

-2.0
-0.8
9.4
40.1
11.3
4.6
8.0
5.5
0.5
3.9
3.5
10.9
2.3
5.0
1.6
1.6
-1.9
-3.6
100.0
100.0

Table 4: Comparing relative skewness decompositions across calibrations

Comparing different calibrations of the model reveals that the results are sensitive to the

calibration. With σ = 0.5, durable manufacturing and FIRE loses in importance for kurtosis

while the opposite is true for σ = 1. For skewness, FIRE is found to be less important when

labor supply is more elastic.
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Elasticity of substitution σ 0.75
Elasticity of labor supply φ 1
Industry Ktot

Agriculture 3.0
Mining/Petroleum Extraction 8.2
Construction 79.4
Durable Manufacturing 57.9
Nondurable Manufacturing 14.2
Wholesale 6.5
Retail 2.7
Transport. 2.2
Utilities -1.4
Information 3.6
FIRE -22.1
Business Services 8.0
Education/Health -1.4
Leisure and Accommodation 0.1
Other Services 0.9
Federal Government -2.6
State Government -16.7
Local Government -42.4
Total 100.0
Actual (employment) 99.8

0.75
3

Ktot

2.6
10.8
43.3
60.4
11.8
7.2
1.7
2.4
-1.6
3.5
-15.7
7.6
-1.0
-0.1
0.2
-1.8
-8.6
-22.9
100.0
99.8

0.5
1

Ktot

2.5
7.7
85.8
40.2
13.6
3.2
2.7
1.8
0.4
3.5
-4.6
6.6
-0.9
0.6
0.9
-2.2
-17.5
-44.3
100.0
99.6

0.5
3

Ktot

2.5
10.6
46.1
52.7
11.5
5.4
1.8
2.2
-0.4
3.5
-5.5
6.7
-0.8
0.2
0.2
-1.7
-9.8
-25.4
100.0
99.6

1
1

Ktot

3.6
8.9
61.2
74.7
14.6
9.7
2.1
2.9
-2.9
3.7
-34.7
9.8
-1.7
-0.5
1.2
-2.9
-14.2
-35.6
100.0
100.2

1
3

Ktot

2.8
11.4
32.4
66.3
12.0
8.8
1.3
2.8
-2.4
3.6
-21.1
9.0
-1.0
-0.3
0.5
-1.9
-6.6
-17.6
100.0
100.2

Data
Ktot

2.0
3.9
7.9
45.6
11.9
2.4
4.4
5.2
1.0
4.4
1.0
4.3
1.6
2.3
0.6
1.4
-0.2
0.4
100.0
100.0

Table 5: Comparing relative kurtosis decompositions across calibrations
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3.3 Role of preferences

Our results are clearly sensitive to the calibration of the preference parameters governing

the elasticity of substitution across industries and the labor supply elasticity.

The main effect of increasing the elasticity of labor supply is to scale down the implied

size of sectoral shocks, as can be seen by comparing the magnitudes of the model-implied

productivity shocks in Figure 5 in the Appendix: Comparing the panels on the left with

φ = 1 to the ones on the right with φ = 3 shows that the shape of the shocks are similar, but

the scale of the shocks is reduced by roughly one quarter when moving from the low to the

high labor supply elasticity. Intuitively, wages are a key determinant of marginal costs in our

model and with more elastic labor supply given movements in employment imply smaller

movements in the wage – and hence smaller productivity shocks to yield the same relative

price pattern across industries that explains the equilibrium allocation. This can be seen in a

static version of our model without wealth effects on labor supply and capital as in Carvalho

and Gabaix (2013). In this model, we have a closed form expression for productivity growth

that is given by:

∆ log zit =

(

1 +
1− σ

φ

)
1− µi

1− σ
·

[∑

k y
∗

kt∆ logNkt −
∑

k

∑

l µlΓkl,ty
∗

lt∆ logNlt
∑

k y
∗

k −
∑

k

∑

l µlΓkl,ty
∗

lt

]

(21)

−
1

1− σ

∑

j

(
I − (diag(µ).ΓM)′

)

jit

[
y∗jt∆ logNjt −

∑

l µlΓjlty
∗

lt∆ logNlt

y∗jt −
∑

l µlΓjlty
∗

lt

]

Clearly, a higher labor supply elasticity reduces productivity growth across industries for

given employment growth. The size of this effects affects only the first component of pro-

ductivity growth and does depend on the labor share in each industry, 1 − µi. This may

explain why the relative shock contributions to skewness and kurtosis discussed previously

are not invariant to the labor supply elasticity.

The elasticity of substitution across industries also affects the magnitude of the inferred

productivity shocks, as well as the persistence of their deviations from mean. A first order

effect of making goods more complementary by lowering σ is also that shocks are found to

be smaller in magnitude. With more elastic industry demands, our model also infers bigger

and slower swings in productivity growth; see Figure 5 in the Appendix. We take the latter

as tentative evidence in favor of the model with a lower elasticity of substitution.

3.4 Role of common factors

It is possible that the shocks to industry productivity we identify are largely driven by a single

common productivity shock. We now allow for this possibility and define a new “aggregate”
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productivity shock as the average productivity growth shock across all industries in a given

quarter. In other words, we define the aggregate shock as the time fixed effects of the

industry-specific productivity shocks. In keeping with our model, we append to the capital

and employment policy functions (15) and (16) a column vector of with the sum of the

exposure to the industry-specific shocks. This changes only the accounting, but not the

aggregate implications. The results of this exercise are presented in Tables 6 and 7.

It is worth noting that the average industry-specific shock explains between roughly one

third and two thirds of aggregate employment growth or less, as measured by the R2, over

our sample period, depending on preference parameters (see Figures 4 in the Appendix).9

The larger these aggregate contributions, the better the aggregate shock also seems to be

able to explain higher moments: The common aggregate shock explains about 60-100% of

total kurtosis, and 80-130% of observed total skewness – and less so when labor supply is

more elastic. This also applies to specific historic episodes such as the most recent recession:

For example in the case of σ = 0.75 and elastic labor supply φ = 3 the common productivity

factor explains about 4% of the total cumulative employment decline of 6%, but Construction

and Durables Manufacturing have contributions that are almost as important.

The aggregate average productivity shock does not, however, eliminate the industry-

specific contributions to kurtosis and skewness: For skewness individual industries explain

between -70% to +70% of skewness as well even when aggregate shocks explain 130% of

model-implied skewness in the σ = 0.75, φ = 1 case. The decomposition results for decom-

posed kurtosis are not quite as dramatic, but also here sizable industry specific components

remain. The overexplaining of aggregate kurtosis by individual components is less of an issue

when labor supply is elastic, but in the case the aggregate common factor also has less ex-

planatory power. Together, these results are indicative of an actual role of industry-specific

shocks that are not captured by a single aggregate component.

4 Next Steps

The work presented in this draft is highly preliminary. There are at least five directions

along which the analysis presented in Sections 2 and 3 should be extended, in addition to

robustness checks.

The proposed model extensions are:

• Consumption durability and adjustment costs. Our current calibration identifies sec-

ondary sectors such as durable manufacturing and construction as pivotal sectors, but

9Note that this result is in line with the estimates in Atalay (2014).
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Elasticity of substitution σ 0.75
Elasticity of labor supply φ 1
Industry Stot

Agriculture -4.6
Mining/Petroleum Extraction -3.3
Construction 73.8
Durable Manufacturing -71.9
Nondurable Manufacturing -1.5
Wholesale -9.6
Retail -0.6
Transport. -3.1
Utilities 1.6
Information -0.7
FIRE 13.4
Business Services -4.8
Education/Health -0.7
Leisure and Accommodation 0.2
Other Services 0.4
Federal Government 0.8
State Government -5.3
Local Government -14.4
Aggregate 130.5
Total 100.0
Actual (employment) 79.9

0.75
3
Stot

-2.3
-2.2
2.7
7.5
5.6
0.0
-0.1
0.6
1.1
0.6
10.8
1.1
-0.3
0.1
2.1
2.6
-3.6
-11.1
85.0
100.0
79.9

0.5
1
Stot

-2.0
-2.4
-5.1
-57.0
4.8
-4.4
-0.5
1.4
2.4
-0.2
30.3
0.0
0.1
0.5
3.8
1.0
0.2
0.3
126.6
100.0
81.2

0.5
3
Stot

-1.3
-2.0
-14.7
15.4
6.9
2.3
0.0
1.7
0.7
0.7
10.2
2.0
-0.4
0.2
2.8
1.4
-4.6
-11.7
90.5
100.0
81.2

1
1
Stot

-6.8
-3.5
158.4
-42.2
-8.0
-10.7
-0.5
-7.6
-1.7
-0.9
-37.1
-9.4
-1.9
-0.7
-4.4
0.4
-10.4
-27.0
114.0
100.0
78.5

1
3
Stot

-3.5
-2.4
29.1
2.0
3.8
-2.1
-0.3
-0.8
1.0
0.4
4.3
-0.4
-0.5
-0.2
0.9
3.8
-3.5
-11.4
80.0
100.0
78.5

Data
Stot

-2.7
-1.5
5.7
31.1
6.5
1.1
-0.1
3.0
0.0
2.0
-0.7
3.7
-4.9
-1.0
-0.8
-0.7
-4.7
-11.5
75.6
100.0
100.0

Table 6: Comparing skewness decompositions
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Elasticity of substitution σ 0.75
Elasticity of labor supply φ 1
Industry Ktot

Agriculture -2.8
Mining/Petroleum Extraction 4.5
Construction 43.2
Durable Manufacturing 16.2
Nondurable Manufacturing -17.1
Wholesale 0.5
Retail -0.6
Transport. -4.8
Utilities -1.4
Information 0.2
FIRE -17.5
Business Services -1.4
Education/Health 0.5
Leisure and Accommodation -0.0
Other Services -4.7
Federal Government 0.0
State Government -1.4
Local Government -4.3
Aggregate 90.9
Total 100.0
Actual (employment) 99.8

0.75
3

Ktot

-1.9
7.8
14.2
26.1
-11.4
2.3
-0.6
-2.9
-1.5
0.9
-11.7
0.2
1.0
0.0
-4.1
0.6
4.0
8.6
68.3
100.0
99.8

0.5
1

Ktot

-2.9
4.0
52.5
-10.7
-15.7
-3.0
-1.0
-4.9
-0.4
0.1
-5.2
-2.4
0.3
0.0
-3.9
-0.1
-2.0
-5.4
100.5
100.0
99.6

0.5
3

Ktot

-1.7
7.6
19.1
12.6
-10.5
0.5
-0.8
-2.9
-0.9
0.9
-5.2
-0.4
0.7
-0.0
-3.5
0.4
3.5
7.8
72.9
100.0
99.6

1
1

Ktot

-2.4
5.4
23.1
44.9
-16.8
4.1
-0.4
-3.9
-2.0
0.5
-24.9
0.3
0.9
0.0
-4.6
0.2
-0.3
-1.3
77.1
100.0
100.2

1
3

Ktot

-1.9
8.4
1.2
38.8
-11.6
4.1
-0.4
-2.4
-1.6
1.0
-13.1
1.2
1.6
0.2
-4.0
0.8
4.8
10.4
62.6
100.0
100.2

Data
Ktot

-1.6
2.4
3.8
32.5
1.8
-1.5
-3.6
1.3
0.2
1.7
-2.3
-0.9
-2.3
-2.6
-0.9
-2.1
-2.1
-5.5
81.6
100.0
100.0

Table 7: Comparing kurtosis decompositions allowing for an aggregate shock
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their precise contributions are sensitive to the calibration of preference parameters.

Calibrating the model to allow for consumption durability and adjustment costs in the

investment rate XtJ

Kt−1,J
can help pin down the implied productivity contributions.

• Time-varying Input-Output parameters. We can allow for exogenous time-variation

in factor shares and input-output linkages. Starting from our baseline model, this

extension will allow us to assess whether the documented tail behavior can be attributed

to economic fundamentals via changing input-output linkages, thereby connecting to

the literature on stochastic volatility. Incorporating this extension into the dynamic

model requires modeling agents’ expectations about parameter changes.

• Initial conditions: Currently we initialize our economic filter at the steady state. An

alternative possibility is to draw an initial condition from the model-implied long-

run distribution of states. Since the latter will depend on the initial conditions, this

extension would require us to iterate until the long-run distribution stabilizes.

• Prices: It would be interesting to use information on prices to discipline our model

and to distinguish shocks to demand from preference shocks.

• Finally, there are alternative decompositions that we could compute to characterize the

contribution of each industry to aggregate skewness and kurtosis. Using an alternate

decomposition, Barnichon (2012) computes the contribution of vacancy postings and

job separations to skewness and kurtosis of unemployment.

Robustness checks include:

• Finer industry definitions: The Bureau of Economic Analysis (BEA) has data on value

added, by industry, for each year between 1947 and the present. The industry-level

classification used by the BEA is roughly the 2-digit level, which is substantially more

detailed than that of the BLS Current Employment Survey data.

• Differences across periods : Tail risk of non-farm employment growth rates has become

more pronounced over time. Skewness in aggregate quarterly employment growth was

-0.56 in the first half of the sample (1947-1979), and -1.26 in the second half of the

sample. Excess kurtosis is was 1.09 and 2.23 in the two parts of the sample. These

differences reflect in part, but decidedly not in whole, the Great Recession. In a future

draft, we plan on computing the fraction of these differences that are due to industry

composition, as opposed to differences in individual industries’ tail risks.
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A Deriving the Extended Model Filter

A.1 The Model

The general model takes the following form:

maxE0

∞∑

t=0

βt






log



C̄ b̃
t

[
N∑

J=1

ω
1

σ

J (δCJ
CtJ)

σ−1

σ

] σ
σ−1



−
φ

φ+ 1

(
N∑

J=1

NtJ

)φ+1

φ







where C̄t is given and b̃ = σ−1
σ
b. Note that for b = 1 so that b̃ = σ−1

σ
and with C̄t = Ct in

equilibrium, the equilibrium conditions collapse to those of a simple economy without wealth

effects on labor supply.

Maximization is subject to the following constraints:

QtJ = − (1− δCJ
)Ct−1J + Ct,J +

N∑

I=1

[Mt,J→I +Xt,J→I ]

Kt,J = XtJ + (1− δK)Kt−1,J (22)

XtJ =
∏

I

(
Xt,I→J

ΓX
IJ

)ΓX
IJ

(23)

MtJ =
∏

I

(
Mt,I→J

ΓM
IJ

)ΓM
IJ

(24)

QtJ = ztJ

(
Kt−1,J

(1− µJ)αJ

)αJ (1−µJ )
(

NtJ

(1− µJ) (1− αJ)

)(1−αJ )(1−µJ )
(
MtJ

µJ

)µJ

(25)

We focus again on the social planner’s constrained maximization problem: Since this

economy satisfies the conditions of the Welfare Theorems, the planner’s solution will corre-

spond to an equilibrium outcome. In this constrained maximization problem, let PtJ refer

to the Lagrange multiplier associated with the market-clearing-condition for the output of

industry J in period t, and let P inv
tJ refer to the Lagrange multiplier associated with the

market-clearing condition for the industry J investment good in period t. Finally, Et refers

to the expectation operator; the expectations are formed at time t.

L = E0

∞∑

t=0

βt






log



C̄ b̃
t

[
N∑

J=1

ω
1

σ

J (δCJ
CtJ)

σ−1

σ

] σ
σ−1



−
φ

φ+ 1

(
N∑

J=1

NtJ

)φ+1

φ







−
φ

φ+ 1

(
N∑

J=1

NtJ

)φ+1

φ

+

N∑

J=1

P inv
tJ [XtJ + (1− δK)Kt−1,J −Kt,J ]

A-1



+
N∑

J=1

PtJ

[

QtJ + (1− δCJ
)Ct−1,J − CtJ −

N∑

I=1

[Mt,J→I +Xt,J→I ]

]}

.

The first-order necessary conditions are:

[CtJ ] : PtJ = (ωJ)
1

σ (δCJ
)
σ−1

σ (CtJ )
−

1

σ C̄ b̃
t

(
N∑

I=1

(ωI)
1

σ (δCI
· CtI)

σ−1

σ

)−1

+ βEt[Pt+1,J ] (1− δCJ
) . (26)

[Mt,I→J ] :
QtJµJΓ

M
IJ

Mt,I→J
=

PtI

PtJ
. (27)

[Xt,I→J ] : PtI = P inv
tJ

XtJ · ΓX
IJ

Xt,I→J

. (28)

[NtJ ] :

(
N∑

J ′=1

NtJ ′

) 1

φ

=
(1− αJ) (1− µJ)PtJQtJ

NtJ
(29)

[Kt,J ] : P
inv
tJ = β · Et

[
Pt+1,JQt+1,J (1− µJ)αJ

Kt,J

]

+ β(1− δK)Et

[
P inv
t+1,J

]
. (30)

Re-stating the market-clearing condition of each industry J :

QtJ = CtJ −
(
1− δC,J

)
Ct−1,J +

N∑

I=1

[Xt,J→I +Mt,J→I ] . (31)

A.2 Finding the Steady State

In this section we derive the steady state consumption, materials, and investment shares as

well as industry-level employment shares. To do this, we assume that productivity growth

has no deterministic trend component nor drift. Alternatively, with trending or drifting

productivity we would express the steady state as relative to trend along a balanced growth.

We focus on the case of b = 0.

The first-order necessary conditions are (just dropping the time subscripts from the

Lagrangian’s FOC and then re-arranging, cancelling terms when possible):

(PJ)
σ =

(δCJ
)σ

[1− β (1− δCJ
)]σ

ωJ (δCJ
CJ)

−1
C̄1−σ+b− 1

σ
b.

QJµJΓ
M
IJ

MI→J

=
PI

PJ

.

PI = P inv
J

δKKJΓ
X
IJ

XI→J
.
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(
N∑

J ′=1

NJ ′

) 1

φ

=
(1− αJ) (1− µJ)PJQJ

NJ

(1− β(1− δK))P
inv
J = β ·

PJQJ (1− µJ)αJ

KJ

.

δKKJ = XJ

Plug in the cost-minimization-related FOC into the production function:

QJ = zJ

(
KJ

αJ (1− µJ)

)αJ (1−µJ )
(

NJ

(1− αJ) (1− µJ)

)(1−αJ )(1−µJ )
(
MJ

µJ

)µJ

QJ = zJ

(
βPJQJ

(1− β(1− δK))P
inv
J

)αJ (1−µJ )(PJQJ

W

)(1−αJ )(1−µJ )∏

I

(
PJQJ

PI

)ΓM
IJ

µJ

P−1
J = zJ

(
β

(1− β(1− δK))

)αJ (1−µJ )
(

1

W

)(1−αJ )(1−µJ )∏

I

(
1

PI

)ΓM
IJµJ+ΓX

IJ (1−µJ )αJ

PJ = (zJ)
−1

(
(1− β(1− δK))

β

)αJ (1−µJ )

W (1−αJ )(1−µJ )
∏

I

(PI)
ΓM
IJ

µJ+ΓX
IJ

(1−µJ )αJ

logPJ = − log zJ + αJ (1− µJ) log

[
1− β(1− δK)

β

]

+ (1− αJ) (1− µJ) logW

+
∑

I

ΓM
IJµJ + ΓX

IJ (1− µJ)αJ
︸ ︷︷ ︸

ΓIJ

logPI

In what follows we approximate around a constant log zJ . Alternatively, this can be justified

by interpreting zJ,t as deviations from a common trending or drifting term z̄t and expressing

prices in quantities relative to trend.10

Write the last equation in matrix form:

logP = (I − Γ′)
−1

[

(1− µ) ◦

[

α log

[
1− β(1− δK)

β

]

+ (1− α) logW

]]

Setting the wage to be the numeraire good to get:

logP = (I − Γ′)
−1

[

(1− µ) ◦ α log

[
1− β(1− δK)

β

]]

10In the presence of a common trending or drifting term and with common factor shares quantities QJ,t

rise at rate zγ with γ = (1 + µ + (1 − µ)α)−1 and prices PJ,t, P
inv
J,t fall at the same rate along a balanced

growth path.
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Use the market clearing condition for good J (again letting YJ = QJPJ):

YJ = PJδCJ
CJ +

N∑

I=1

[PJXJ→I + PJMJ→I ]

YJ =
(δCJ

)σ

[1− β (1− δCJ
)]σ

ωJ

(
PJC̄

)1−σ
+

N∑

I=1

[
(1− µI)αIβδK

(1− β(1− δK))
ΓX
JI + µIΓ

M
JI

]

︸ ︷︷ ︸

Γ̃JI

YI

Q =

[(

I − Γ̃
)
−1

·

(

ω ◦ P 1−σ ◦
(δC)

σ

[1− β (1− δC)]
σ

)]

· P−1 ◦ C̄1−σ

δC · C = ω ◦ P−σ ◦
(δC)

σ

[1− β (1− δC)]
σ C̄

1−σ

L = α ◦

[(

I − Γ̃
)
−1

·
(
ω ◦ P 1−σ

)
]

Now we can write out the steady-state fractions:

SL
L = 1

L′

‖L‖1

S̃
Q
C = δC · ω ◦ P 1−σ ◦

(δC)
σ

[1− β (1− δC)]
σ ◦

[(

I − Γ̃
)
−1

·
(
ω ◦ P 1−σ

)
]
−1

MJ→I

QJ

=
QIPI

QJPJ

· µIΓJI =
YI

YJ

· µIΓJI

Thus

logSQ
M,J→I = log YI − log YJ + log

[
µIΓ

M
JI

]

And Similarly

logSQ
X,J→I = log YI − log YJ + log

[
(1− µI)αIβδK

(1− β (1− δK))

]

For future reference, define the following matrices:

SK = diag(α ◦ (1− µ))

SL = diag ((1− α) ◦ (1− µ))

SM = diag(µ)

S̃
Q
C = diag(SQ

C )
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S̃M =









ΓM
11 ΓM

21 ... ΓM
N1

ΓM
12 ΓM

22 ... ΓM
N2

... ... ... ...

ΓN
1N ΓM

2N .. ΓM
NN









˜
S
Q
X =









S
Q
X,11 S

Q
X,12 . . . S

Q
X,1N 0 . . .

. . . 0 S
Q
X,21 ... S

Q
X,2N 0 . . .

... ... ... ...

. . . 0 S
Q
X,N1 . . . S

Q
X,NN









S̃
Q
M =









S
Q
M,11 S

Q
M,12 . . . S

Q
M,1N 0 . . .

. . . 0 S
Q
M,21 ... S

Q
M,2N 0 . . .

... ... ... ...

. . . 0 S
Q
M,N1 . . . S

Q
M,NN









SX
1 =









ΓX
11 ΓX

21 ... ΓX
N1

ΓX
12 ΓX

22 ... ΓX
N2

... ... ... ...

ΓX
1N ΓX

2N .. ΓX
NN









A.3 Log-Linearized Equations

We now approximate the model around the above (detrended) steady state. The “hat”

notation stands for percentage deviation from steady state in what follows.

K̂t,J = δKX̂tJ + (1− δK)K̂t−1,J

X̂tJ =
∑

I

SX
IJ · X̂t,I→J

M̂tJ =
∑

I

SM
IJ · M̂t,I→J

In the previous equations, SX
IJ and SM

IJ are the steady-state fraction of capital (materials)

expenditures of industry J that are purchased from industry I.

Q̂tJ − M̂t,I→J = P̂tI − P̂tJ

X̂tJ − X̂t,I→J = P̂tI − P̂ inv
tJ

P̂tJ + Q̂tJ − L̂tJ =
1

φ

N∑

I=1

SL
I L̂tI

A-5



In the previous equation, SL
I is the steady state fraction of labor that is employed in

industry I.

P̂ inv
tJ = β(1− δK)P̂

inv
t+1,J + (1− β(1− δK))

[

P̂t+1,J + Q̂t+1,J − K̂t+1,J

]

Q̂tJ =
1

δCJ

S
Q
CJ
Ĉt,J − S

Q
C

1− δCJ

δCJ

Ĉt−1,J +

N∑

I=1

[

S
Q
XJ→I

X̂t,J→I + S
Q
MJ→I

M̂t,J→I

]

S
Q
ζJ

is the steady-state fraction of good J that is used for the purpose of ζ ∈ {CJ , XJ→I , MJ→I}.

P̂tJ = (1− δCJ
) P̂t+1,J −

δCJ

σ
Ĉt,J − δCJ

σ − 1

σ

N∑

I=1

(1− b)SC
I Ĉt,I

SC
I is the steady state fraction of consumption expenditures that comes from good I.

A.4 System Reduction

Note: k̂, X̂t, M̂t, p̂
inv
t , p̂t, q̂t, and ĉ are N × 1 vectors. x̂t and m̂t are of dimension N2 × 1.

T1 ≡ 1N×1 ⊗ I and T2 ≡ I ⊗ 1N×1.

Initial system of equations:

k̂t = δKX̂t + (1− δK) k̂t−1

x̂t = T1X̂t + T1p̂
inv
t − T2p̂t

m̂t = T1q̂t + [T1 − T2] p̂t
(
1

φ
SL
L+I

)

l̂t = p̂t + q̂t

p̂invt = β(1− δK)Et[p̂
inv
t+1] + (1− β(1− δK))

[

Et[p̂t+1 + q̂t+1]− k̂t

]

q̂t = (δC)
−1

S̃
Q
C ĉt −

(
(δC)

−1 − I
)
S̃
Q
C ĉt−1 + S̃

Q
X x̂t + S̃

Q
Mm̂t

q̂t = ẑt + SK k̂t−1 + SLl̂t + SMM̂t

p̂t = β (I − δC) p̂t+1 −
1

σ
(I − β (I − δC))

[
I + SC

I (σ − 1)
]
ĉt

Step 1: Substitute out x̂t and m̂t

k̂t = δKX̂t + (1− δK) k̂t−1
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(
1

φ
SL
L+I

)

l̂t = p̂t + q̂t

p̂invt = β(1− δK)Et[p̂
inv
t+1] + (1− β(1− δK))

[

Et[p̂t+1 + q̂t+1]− k̂t

]

[

I − S̃
Q
MT1

]

q̂t = (δC)
−1

S̃
Q
C ĉt −

(
(δC)

−1 − I
)
S̃
Q
C ĉt−1 +

˜
S
Q
XT1X̂t + S̃

Q
XT1p̂

inv
t

+
[

S̃
Q
MT1 − S̃

Q
MT2 −

˜
S
Q
XT2

]

p̂t

q̂t = ẑt + SK k̂t−1 + SLl̂t + SMM̂t

p̂t = β (I − δC) p̂t+1 −
1

σ
(I − β (I − δC))

[
I + SC

I (σ − 1)
]
ĉt

Step 2: Re-write the investment Euler equation using that SX
1 p̂t = p̂invt from pre-multiplying

the no-arbitrage equation for investment inputs with SX
1 :

k̂t = δKX̂t + (1− δK) k̂t−1

x̂t = T1X̂t + T1p̂
inv
t − T2p̂t

m̂t = T1q̂t + [T1 − T2] p̂t
(
1

φ
SL
L+I

)

l̂t = p̂t + q̂t

SX
1 p̂t =

[

SX
1 β(1− δK) + β̃

]

Et[p̂t+1] + β̃
[

Et[q̂t+1]− k̂t

]

[

I − S̃
Q
MT1

]

q̂t = (δC)
−1

S̃
Q
C ĉt −

(
(δC)

−1 − I
)
S̃
Q
C ĉt−1 +

˜
S
Q
XT1X̂t + S̃

Q
XT1S

X
1 p̂t

+
[

S̃
Q
MT1 − S̃

Q
MT2 − S̃

Q
XT2

]

p̂t

q̂t = ẑt + SK k̂t−1 + SLl̂t + SMM̂t

p̂t = β (I − δC) p̂t+1 −
1

σ
(I − β (I − δC))

[
I + SC

I (σ − 1)
]
ĉt

Step 3: Use the law of motion for capital to re-write the resource constraint as X̂t =
1
δK

k̂t −
1−δK
δK

k̂t−1 and simplify:

(
1

φ
SL
L+I

)

l̂t = p̂t + q̂t

SX
1 p̂t =

[

SX
1 β(1− δK) + β̃

]

Et[p̂t+1] + β̃
[

Et[q̂t+1]− k̂t

]

[

I − S̃
Q
MT1

]

q̂t = (δC)
−1

S̃
Q
C ĉt −

(
(δC)

−1 − I
)
S̃
Q
C ĉt−1 +

1

δK

˜
S
Q
XT1k̂t−
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1− δK

δK

˜
S
Q
XT1k̂t−1 +

[

S̃
Q
MT1 − S̃

Q
MT2 −

˜
S
Q
XT2 + S̃

Q
XT1S

X
1

]

p̂t

q̂t = ẑt + SK k̂t−1 + SLl̂t + SMM̂t

p̂t = β (I − δC) p̂t+1 −
1

σ
(I − β (I − δC))

[
I + SC

I (σ − 1)
]
ĉt

Step 4: Re-write the production function using M̂t = q̂t + (I − Γ′

M) p̂t

(
1

φ
SL
L+I

)

l̂t = p̂t + q̂t

SX
1 p̂t =

[

SX
1 β(1− δK) + β̃

]

Et[p̂t+1] + β̃
[

Et[q̂t+1]− k̂t

]

[

I − S̃
Q
MT1

]

q̂t = (δC)
−1

S̃
Q
C ĉt −

(
(δC)

−1 − I
)
S̃
Q
C ĉt−1 +

1

δK

˜
S
Q
XT1k̂t−

1− δK

δK

˜
S
Q
XT1k̂t−1 +

[

S̃
Q
MT1 − S̃

Q
MT2 −

˜
S
Q
XT2 + S̃

Q
XT1S

X
1

]

p̂t

[I − SM ] q̂t = ẑt + SK k̂t−1 + SLl̂t + SM (I − Γ′

M) p̂t

p̂t = β (I − δC) p̂t+1 −
1

σ
(I − β (I − δC))

[
I + SC

I (σ − 1)
]
ĉt

Step 5: Re-write the production function and the investment Euler equation using that

optimality implies:

l̂t =

(
1

φ
SL
L+I

)
−1

p̂t +

(
1

φ
SL
L+I

)
−1

q̂t

SX
1 p̂t =

[

SX
1 β(1− δK) + β̃

]

Et[p̂t+1] + β̃
[

Et[q̂t+1]− k̂t

]

[

I − S̃
Q
MT1

]

q̂t = (δC)
−1

S̃
Q
C ĉt −

(
(δC)

−1 − I
)
S̃
Q
C ĉt−1 +

1

δK

˜
S
Q
XT1k̂t−

1− δK

δK

˜
S
Q
XT1k̂t−1 +

[

S̃
Q
MT1 − S̃

Q
MT2 −

˜
S
Q
XT2 + S̃

Q
XT1S

X
1

]

p̂t
[

[I − SM ]− SL

(
1

φ
SL
L+I

)
−1
]

︸ ︷︷ ︸

Λ−1

q̂t = ẑt + SK k̂t−1 +

[

SM (I − Γ′

M) + SL

(

I +
1

φ
SL
L

)
−1
]

p̂t

p̂t = β (I − δC) p̂t+1 −
1

σ
(I − β (I − δC))

[
I + SC

I (σ − 1)
]
ĉt

Step 6: Use q̂t = Λẑt + ΛSK k̂t−1 + Λ

[

SM (I − Γ′

M) + SL

(
1
φ
SL
L+I

)
−1
]

p̂t
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0 = −SX
1 p̂t +

[

SX
1 β(1− δK) + β̃ + β̃Λ

[

SM (I − Γ′

M) + SL

(
1

φ
SL
L+I

)
−1
]]

Et[p̂t+1]

+ β̃ΛEt [ẑt+1] + β̃ [ΛSK − I] k̂t

0 = (δC)
−1

S̃
Q
C ĉt −

(
(δC)

−1 − I
)
S̃
Q
C ĉt−1 +

1

δK

˜
S
Q
XT1k̂t

−

[
1− δK

δK

˜
S
Q
XT1 +

[

I − S̃
Q
MT1

]

ΛSK

]

k̂t−1 −
[

I − S̃
Q
MT1

]

Λẑt

+

[

S̃
Q
MT1 − S̃

Q
MT2 −

˜
S
Q
XT2 −

[

I − S̃
Q
MT1

]

Λ

[

SM (I − Γ′

M) + SL

(
1

φ
SL
L+I

)
−1
]

+ S̃
Q
XT1S

X
1

]

p̂t

0 = −p̂t + β (I − δC) p̂t+1 −
1

σ
(I − β (I − δC))

[
I + SC

I (σ − 1)
]
ĉt

Step 7 Stack Equations:

Call Λ̃ ≡ Λ

[

SM (I − Γ′

M) + SL

(
1
φ
SL
L+I

)
−1
]

0 =






SX
1 β(1 − δK) + β̃ + β̃Λ̃ β̃ [ΛSK − I] 0

0 1

δK

˜
S
Q
XT1 (δC)

−1
S̃
Q
C

β (I − δC) 0 − 1

σ
(I − β (I − δC))

[
I + SC

I (σ − 1)
]











Et[p̂t+1]

k̂t

ĉt






+







−SX
1 0 0

S̃
Q
MT1 − S̃

Q
MT2 −

˜
S
Q
XT2 −

[

I − S̃
Q
MT1

]

Λ̃ + S̃
Q
XT1S

X
1 −

[
1−δK
δK

˜
S
Q
XT1 +

[

I − S̃
Q
MT1

]

ΛSK

]

−
(

(δC)
−1

− I
)

−I 0 0












p̂t

k̂t−1

ĉt−1






+







β̃Λ

−
[

I − S̃
Q
MT1

]

Λ

0






ẑt

1

δK

˜
S
Q
XT1k̂t + (δC)

−1
S̃
Q
C ĉt+

P̂t = −
1

σ

[

I +

N∑

I=1

(σ − 1) (1− b)SC
I

]

ĉt

With no consumption good durability:

0 =

[

SX
1 β(1 − δK) + β̃ + β̃Λ̃ β̃ [ΛSK − I]

0 1

δK

˜
S
Q
XT1

][

Et[p̂t+1]

k̂t

]

+




−SX

1 0

S̃
Q
MT1 − S̃

Q
MT2 −

˜
S
Q
XT2 −

[

I − S̃
Q
MT1

]

Λ̃ + S̃
Q
XT1S

X
1 − 1

σ

[
I + SC

I (σ − 1)
]
S̃
Q
C −

[
1−δK
δK

˜
S
Q
XT1 +

[

I − S̃
Q
MT1

]

ΛSK

]




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×

[

p̂t

k̂t−1

]

+

[

β̃Λ

−
[

I − S̃
Q
MT1

]

Λ

]

ẑt

A.5 Blanchard-Kahn

We have expressed the reduced system as






Et[p̂t+1]

k̂t

EC
δ ĉt




 = A






p̂t

k̂t−1

EC
δ ĉt−1




+Bẑt,

where A has N +NC
δ stable eigenvalues and N unstable eigenvalues.

Using a Jordan decomposition write A = V DV −1 where D is diagonal and is ordered such

that the N explosive eigenvalues are ordered first and the N + NC
δ stable eigenvalues are

ordered last. Re-write:

Et[Yt+1] ≡ V −1






Et[p̂t+1]

k̂t

EC
δ ĉt




 = DV −1






p̂t

k̂t−1

EC
δ ĉt−1




+ V −1Bẑt,≡ DYt + B̃ẑt,

Partition Yt into the first N×1 block Y1,t and the lower (N+NC
δ )×1 block Y2,t and similarly

for D and B̃. Re-write:

Y1,t = D−1
1 Et[Y1,t+1]−D−1

1 B̃1zt

Substitute recursively

Y1,t = −D−1
1

T−1∑

s=0

D−s
1 B̃1Et[zt+s] +D−T

1 Et[Y1,t+1] → −D−1
1 (I −D−1

1 )−1B̃1zt

using the random walk assumption.

For Y2,t simply:

Y2,t = D2Y2,t−1 + B̃2zt.

Note that
[

Y1,t

Y2,t

]

= V −1






p̂t

k̂t−1

EC
δ ĉt−1





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and therefore, from the first set of N equations:

p̂t = −(V −1
11 )−1V −1

12

[

k̂t−1

EC
δ ĉt−1

]

+ (V −1
11 )−1Y1,t

= −(V −1
11 )−1V −1

12

[

k̂t−1

EC
δ ĉt−1

]

− (V −1
11 )−1D−1

1 (I −D−1
1 )−1B̃1zt

The endogenous state evolves as follows:

[

k̂t

EC
δ ĉt

]

= A22

[

k̂t−1

EC
δ ĉt−1

]

+A21p̂t +B2zt

= (A22 −A21(V
−1
11 )−1V −1

12 )

[

k̂t−1

EC
δ ĉt−1

]

−A21(V
−1
11 )−1D−1

1 (I −D−1
1 )−1B̃1zt +B2zt

(32)

For future reference, in the case without durable consumption:

p̂t = A−1
21 k̂t −A−1

21 A22k̂t−1 −A−1
21 B2zt

In the general case with durable consumption, pre-multiply (32) with the transpose of the

(nk + nc)× nk matrix A21:

A′

21

[

k̂t

EC
δ ĉt

]

= A′

21A22

[

k̂t−1

EC
δ ĉt−1

]

+A′

21A21p̂t +A′

21B2zt

Note that if A21 has full column rank, then A′

21A21 is a square, non-singular matrix. Hence:

p̂t = (A′

21A21)
−1A′

21

[

k̂t

EC
δ ĉt

]

− (A′

21A21)
−1A′

21A22

[

k̂t−1

EC
δ ĉt−1

]

− (A′

21A21)
−1A′

21B2zt

(33)

A.6 Filtering

Define

Ṽ ≡ (V −1
11 )−1D−1

1 (I −D−1
1 )−1B̃1
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S̃ ≡

(
1

φ
SL
L+I

)
−1

In the case with no consumption good durability:

l̂t = S̃p̂t + S̃q̂t

= S̃p̂t + S̃
[

Λẑt + ΛSK k̂t−1 + Λ
[

SM (I − Γ′

M) + SLS̃
]

p̂t

]

= S̃
[

I + Λ
[

SM (I − Γ′

M) + SLS̃
]]

︸ ︷︷ ︸

ΠPL

p̂t + S̃Λẑt + S̃ΛSK k̂t−1

=
[

−ΠPLA
−1
21 A22 + S̃ΛSK

]

k̂t−1 +ΠPLA
−1
21 k̂t +

[

−ΠPLA
−1
21 B2 + S̃Λ

]

ẑt

=
[

−ΠPLA
−1
21 A22 + S̃ΛSK

]

k̂t−1 +
[

−ΠPLA
−1
21 B2 + S̃Λ

]

ẑt

+
[
ΠPLA

−1
21 A22 − ΠPL(V

−1
11 )−1V −1

12

]
k̂t−1 +

[

−ΠPLṼ +ΠPLA
−1
21 B2

]

zt

=
[

S̃ΛSK −ΠPL(V
−1
11 )−1V −1

12 )
]

︸ ︷︷ ︸

Πk

k̂t−1 +
[

S̃Λ− ΠPLṼ
]

︸ ︷︷ ︸

Πz

ẑt

kt−1 = Π−1
k l̂t − Π−1

k Πz ẑt

l̂t+1 = Πkk̂t +Πz ẑt+1

= Πk

[
A22 −A21(V

−1
11 )−1V −1

12

]
k̂t−1 +Πz ẑt+1 +Πk

[

B2 −A21Ṽ
]

zt

= Πk

[
(A22 −A21(V

−1
11 )−1V −1

12 )
]
Π−1

k
︸ ︷︷ ︸

≡̺

l̂t +Πz ẑt+1

+Πk

[

B2 −A21Ṽ +
[
A22 −A21(V

−1
11 )−1V −1

12

]
Π−1

k Πz

]

︸ ︷︷ ︸

≡Ξ

zt
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B Data with and without detrending

Normal quantile plots
Raw data Detrended industry data
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Actual vs model implied: corr = 0.97
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Figure 3: Comparing aggregate employment growth with and without detrending at the
industry level
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C Quality of the approximation

Elasticity of substitution across industries σ = 0.75
Labor supply elasticity φ = 1 Labor supply elasticity φ = 3
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Figure 4: Model-implied employment based on cross-industry average of filtered
productivty shocksversus actual employment for different preference parameters.
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D Implied productivity shocks

Elasticity of substitution across industries σ = 0.75
Labor supply elasticity φ = 1 Labor supply elasticity φ = 3
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Figure 5: Model-implied productivity shocks for all industries for different preference
parameters
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E Historical decomposition

Without aggregate shocks – structural
σ = 0.75, φ = 1 σ = 0.75, φ = 3
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Without aggregate shocks – statistical
σ = 0.75, φ = 1 σ = 0.75, φ = 3
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Figure 6: Cumulative historical employment in Great Recession without aggregate
component – top 5 industries with structural contribution in 2010
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With aggregate shocks – structural
σ = 0.75, φ = 1 σ = 0.75, φ = 3
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With aggregate shocks – statistical
σ = 0.75, φ = 1 σ = 0.75, φ = 3
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Figure 7: Cumulative historical employment in Great Recession with aggregate component
– top 5 industries with structural contribution in 2010
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