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Abstract Collateralized mortgage obligations, collateralized debt obliga-

tions and other bundles of securities that are collateralized by other securi-

ties (rather than directly by physical objects) have received a great deal of

attention in the the popular press, where it it frequently asserted that such

securities serve no social function. This paper builds an extension of general

equilibrium theory that incorporates durable goods, collateralized securities

and pools of collateralized securities to argue that such pools do in fact serve

an important social function. In particular, such pools make it possible for

the economy to reach an efficient allocation in robust situations where it

would otherwise be impossible.
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1 Introduction

Recent events in financial markets provide a sharp reminder that much of the lending in

modern economies is secured, directly or indirectly, by physical capital. Residential and

commercial mortgages are secured directly by the mortgaged property itself; corporate bonds

are secured directly by the physical assets of the firm; collateralized mortgage obligations and

debt obligations and other similar instruments are secured by pools of mortgages and loans

and hence secured indirectly by the physical capital that secures these mortgages and loans.

The total of indirectly collateralized lending is enormous: in 2007, the (notional) value of

collateralized debt obligations was estimated to exceed $50 trillion – more than three times

U.S. GDP. Surprisingly, there has been little discussion of the effects of direct and indirect

collateralization in the scholarly literature. The discussion in the popular press has focused

on the negative effects and often suggests that collateralized debt obligations serve no social

function.

The central purpose of this paper is to argue to the contrary that collateralized debt

obligations and other pools of securities serve a very important social function. In particular

they enable the realization of Walrasian outcomes in situations where such outcomes would

otherwise not be obtainable. should we say more here?

need a better segue In an environment in which all lending must be collateralized,

the supply of collateral becomes an important financial constraint. If collateral is in short

supply the necessity of using collateral to back promises creates incentives to create collateral

and to stretch existing collateral. The state creates collateral by issuing bonds that can be

used as collateral and by promulgating law and regulation that make it easier to seize goods

used as collateral. The market creates collateral through financial engineering, which has

rapidly accelerated over the last three-and-a-half decades (beginning with the introduction

of mortgage-backed securities in the early 1970’s) and that stretches collateral by making it

possible for the same collateral to be used several times: allowing agents to collateralize their

promises with other agents’ promises (pyramiding) and allowing the same collateral to back



many different promises (tranching). say something about pooling These innovations are

at the bottom of the securitization and derivatives boom on Wall Street, and have greatly

expanded the scope of financial markets.

To make this point – and others – we formulate an extension of general equilibrium

theory that incorporates durable goods, securities that are collateralized by durable goods

and securities that are collateralized by other securities that are in turn collateralized by

durable goods. To focus the discussion, we restrict attention to a pure exchange framework

with two dates but many possible states of nature (representing the uncertainty at time

0 about exogenous shocks at time 1). As is usual in general equilibrium theory, we view

individuals as anonymous price-takers.1 For simplicity, we use a framework with a finite

number of agents and divisible loans.2 Central to the model are that the definition of a

security must include not only its promised deliveries but also the collateral that backs those

promises and the fact that the actual deliveries will depend on the value of the collateral

and not only on the promises.

The requirement that borrowing be collateralized implies an endogenous bound on short

sales, so that equilibrium always exists (Theorem 1). Although the existence of more com-

plicated securities expands the set of possible market outcomes, it may still fail to yield

Walrasian allocations. In particular, no collateral equilibrium can ever achieve an allocation

in which some agent’s consumption in some terminal state has less value than his/her initial

(unpledgeable) endowment in that state (Theorem 2). As a consequence, even with pooling,

pyramiding and tranching, collateral equilibrium is robustly inefficient: given any array of

consumer preferences and any social endowment, there is always an open set of distributions

1Anonymity and price-taking might appear strange in an environment in which individuals might default.

In our context, however, individuals will default when the value of promises exceeds the value of collateral

and not otherwise; thus lenders do not care about the identity of borrowers, but only about the collateral

they bring.
2The assumptions of anonymity and price-taking might be made more convincing by building a model

that incorporates a continuum of individuals, and the realism of the model might be enhanced by allowing for

indivisible loans, but doing so would complicate the model without qualitatively changing the conclusions.
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of that endowment with the property that collateral equilibrium from those endowments fails

to be Pareto optimal (Theorem 3) – no matter what securities are available for trade. On the

other hand, any Walrasian equilibrium in which every agent’s consumption in each terminal

state has greater value than his/her initial (unpledgeable) endowment in that state can be

obtained as a collateral equilibrium whenever a complete set of tranched Arrow securities is

available (Theorem 4). Absent tranching, this conclusion does not hold (Example 1); thus,

pooling pyramiding and tranching served an important role in furthering social welfare.

For a more basic model in which all securities are collateralized directly by physical goods

and a discussion of related literature, see Geanakoplos and Zame (2010).

2 Model

As in the canonical model of securities trading, we consider a world with two dates; agents

know the present but face an uncertain future. At date 0 (the present) agents trade a finite

set of commodities and securities. Between date 0 and date 1 (the future) the state of nature

is revealed. At date 1 securities pay off and commodities are traded again.

2.1 Time & Uncertainty

There are two dates, 0 and 1, and S possible states of nature at date 1. We frequently refer

to 0, 1, . . . , S as spots.

2.2 Commodities, Markets & Prices

There are L ≥ 1 commodities available for consumption and trade in spot markets at each

date and state of nature; the commodity space is RL(1+S) = RL × RLS. We interpret x ∈

RL(1+S) as a claim to consumption at each date and state of the world. For a bundle
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x ∈ RL(1+S) and indices s, `, we write xs for the vector of spot s consumption specified by x,

and xs` for the quantity of commodity ` specified in spot s. We abuse notation and view RL

as the subspace of RL(1+S) consisting of those vectors which are 0 in the last LS coordinates;

thus we identify a vector x ∈ RL with (x, 0, . . . , 0) ∈ RL(1+S). Similarly we view RLS as the

subspace of RL(1+S) consisting of those vectors which are 0 in the first L coordinates. We

write δs` ∈ RL(1+S) for the commodity bundle consisting of one unit of commodity ` in spot

s and nothing else. We write x ≥ y to mean that xs` ≥ ys` for each s, `; x > y to mean that

x ≥ y and x 6= y; and x� y to mean that xs` > ys` for each s, `.

We depart from the usual intertemporal models by allowing for the possibility that goods

are durable. If x0 ∈ RL is consumed (used) at date 0 we write Fs(x0) for what remains in state

s at date 1. We assume the map F : S×RL → RL is continuous and is linear and positive in

consumption. The commodity 0` is perishable if F (δ0`) ≡ 0 and durable otherwise. It may

be helpful to think of F as like a production function — except that inputs to production

can also be consumed.

For each s, there is a spot market for consumption at spot s. Prices at each spot lie in

RL
++, so RL(1+S)

++ is the space of spot price vectors. For p ∈ RL(1+S), ps are the prices in spot

s and ps` is the price of commodity ` in spot s.

2.3 Consumers

There are I consumers (or types of consumers). Consumer i is described by a consump-

tion set, which we take to be RL(1+S)
+ , an endowment ei ∈ RL(1+S)

+ , and a utility function

ui : RL(1+S)
+ → R.

2.4 Collateralized Securities

A collateralized security (security for short) is a pair A = (A, c), where A : S×RL
++×RL

++ →

R+ is the promise or face value, and c ∈ RL
+ is the collateral requirement. We allow for the
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possibility that the amount promised in each state depends on spot prices in that state;

hence A is a function (assumed continuous) of the state and of prices in that state. The

collateral requirement c is a bundle of date 0 commodities; an agent wishing to sell one share

of (A, c) must hold the commodity bundle c. (Recall that selling a security is borrowing.)

In our framework, the collateral requirement is the only means of enforcing promises.

Hence, if agents optimize, the delivery per share of security (A, c) in state s will not be the

face value As(p0, ps) but rather the minimum of the face value and the value of the collateral

in state s:

Del((A, c), s, p) = min{As(p0, ps), ps · Fs(c)}

The delivery on a portfolio θ = (θ1, . . . , θJ) ∈ RJ is

Del(θ, s, p) =
∑

j

θjDel((Aj, cj); s, p)

We take as given a finite (but perhaps very large) set of securitiesA = {(A1, c1), . . . , (AJ , cJ)}.

Because deliveries never exceed the value of collateral, we assume without loss of generality

that Fs(c
j) 6= 0 for some s. (Securities that fail this requirement will deliver nothing; in

equilibrium such securities will have 0 price and purchases or sales of such securities will be

irrelevant.) We find it convenient to distinguish between security purchases and sales; we

typically write ϕ, ψ ∈ RJ
+ for portfolios of security purchases and sales, respectively. We

assume that buying and selling prices for securities are identical; we write q ∈ RJ
+ for the

vector of security prices. An agent who sells the portfolio ψ ∈ RJ
+ will have to hold (and will

enjoy) the collateral bundle Coll(ψ) =
∑
ψjcj.

This formulation allows for nominal securities, for real securities, for options and for

complicated derivatives.

2.5 Securitization

Securitization usually refers to the process of converting non-tradable assets into tradable
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securities through the repacking of their cash flows (Elul, 2005). We view securitization more

generally, as the process of creating securities – we shall refer to them as security pools –

that are collateralized by other securities. In general, the securities used as collateral might

in turn be collateralized by other securities, and so forth through many layers, but for our

purposes it shall be enough to allow for only a single layer; we leave the straightforward

generalization to the interested reader. This section presents the formal model; discussion

and applications to welfare are discussed in Section 5

Fix commodities and a family A = {(A1, c1), . . . , (AJ , cJ)} of collateralized securities. A

security pool is a tuple B = (B1, . . . , BT ;χ) where each tranche Bt is a promise of delivery

as a function of prices, and χ = (χ0, χ1) ∈ RL
+×RJ

+ (a bundle of commodities and a portfolio

of securities) is the collateral requirement. It is convenient to write:

Del(χ; s, p) = p · χ0 + Del(χ1; s, p)

for the delivery of the collateral requirement χ = (χ0, χ1). We interpret the promise Bt as

senior to Bt+1, so actual deliveries may be defined by induction:

Del(B1; s, p) = min
{
B1(s, ps), Del(χ; s, p)

}
Del(Bt+1; s, p) = min

{
Bt+1(s, ps), Del(χ; s, p)−

t∑
t′=1

Del(Bt′ ; s, p)

}

Note that the delivery on each of the promises lies (weakly) between 0 and the delivery on

the collateral. There is no loss in assuming that all pools have the same number of tranches

(because we can always add tranches that promise 0 delivery).

If B = {B1, . . . ,BK} is the set of available security pools, a portfolio of security tranches

is a vector Θ ∈ RKT
+ ; the delivery on Θ is

Del(Θ; s, p) =
∑

k

∑
t

ΘktDel(Bkt; s, p)
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2.6 The Economy

An economy with collateralized securities and security pools is a tuple E = 〈(ei, ui),A,B〉.

Write e =
∑
ei for the social endowment. The following assumptions are always in force:

• Assumption 1 e+ F (e) � 0

• Assumption 2 For each consumer i: ei > 0

• Assumption 3 For each consumer i:

(a) ui is continuous and quasi-concave

(b) if x ≥ y ≥ 0 then ui(x) ≥ ui(y)

(c) if x ≥ y ≥ 0 and xs` > ys` for some s 6= 0 and some `, then ui(x) > ui(y)

(d) if x ≥ y ≥ 0, x0` > y0`, and commodity 0` is perishable, then ui(x) > ui(y)

The first assumption says that all goods are represented in the aggregate (keeping in mind

that some date 1 goods may only come into being when date 0 goods are used). The second

assumption says that that individual endowments are non-zero. The third assumption says

that utility functions are continuous, quasi-concave, weakly monotone, strictly monotone in

date 1 consumption of all goods and in date 0 consumption of perishable goods.3

2.7 Budget Sets

We write p for spot prices of commodities, q for prices of securities and Q for prices of

tranches of pools (so qj is the price of security j and Qkt is the price of tranche Bkt of pool

Bk). Write ϕi, ψi, and Φi,Ψi for consumer i’s purchases and sales of securities and tranches

3We do not require strict monotonicity in durable date 0 goods because we want to allow for the possibility

that claims to date 1 consumption are traded at date 0; of course, such claims would typically provide no

utility at date 0.
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(so ϕij, ψijj are consumer i’s purchases and sales of security j and Φkti,Ψkti are consumer

i’s spot purchases and sales of the tranche t of pool k. Given spot prices p, security prices

q and tranche prices Q, the budget set of a consumer whose endowment is e is the set of

plans (x, ϕ, ψ,Φ,Ψ) (for consumption, security purchases, security sales, tranche purchases

and tranche sales) that satisfy the budget constraints at date 0 and in each state at date 1

and the collateral constraints at date 0:

• At date 0

p0 · x0 + q · ϕ+Q · Φ ≤ p0 · e0 + q · ψ +Q ·Ψ

x0 ≥
∑

j

ψjc
j

ϕ ≥
∑

k

max
t

Ψktχk

That is, expenditures for consumption, security purchases and pool purchases do not

exceed income from endowment, security sales and pool sales, date 0 consumption

includes collateral for all security sales and date 0 security purchases include collateral

for all pool sales. Note that, as intended, holding the collateral χk is sufficient to

collateralize sales of one unit of each tranche of pool Bk.

• In state s

ps · xs + Del(ϕ; s, p) + Del(Φ; s, p) ≤ ps · es + ps · Fs(x0)

+ Del(ψ, s, p) + Del(Ψ; s, p)

That is, expenditures for consumption and deliveries on securities and pools do not

exceed income from endowment, from the return on durable goods, and from deliveries

on security promises and pool promises.
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2.8 Pool Equilibrium

Given an economy, E = 〈(ei, ui),A,B〉, a pool equilibrium consists of spot prices p ∈ RL(1+S)
+ ,

security prices q ∈ RJ
+, pool prices Q ∈ RKT

+ and consumer plans (xi, ϕi, ψi,Φi,Ψi) satisfying

the obvious conditions:

• Commodity Markets Clear∑
i

xi =
∑

i

ei +
∑

i

F (ei
0)

• Security Markets Clear ∑
i

ϕi =
∑

i

ψi

• Pool Markets Clear ∑
i

Φi =
∑

i

Ψi

• Plans are Budget Feasible

(xi, ϕi, ψi) ∈ B(p, q,Q; ei,A,B)

• Consumers Optimize

(x, ϕ, ψ,Φi,Ψi) ∈ B(p, q,Q; ei,A,B) ⇒ ui(x) ≤ ui(xi)

It is natural to think of security pools as assembled by intermediaries who purchase all the

collateral and then sells some of the tranches, holding the rest themselves.

2.9 Walrasian Equilibrium

We compare collateral equilibrium with the benchmark of Walrasian equilibrium so it is

useful to recall the definition of Walrasian equilibrium in the present context; see Dubey,

Geanakoplos, and Shubik (2005) for further details. We maintain the same structure of
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commodities and preferences. In particular, date 0 commodities are durable, and Fs(x0) is

what remains in state s if the bundle x0 is consumed at date 0. Suppressing commodities

and the nature of durability, the data of a durable goods economy is thus a set (ei, ui) of

consumers, specified by endowments and utility functions. We use notation in which a

purchase at date 0 conveys the rights to what remains at date 1; hence if commodity prices

are p ∈ R(1+S)L
++ , the Walrasian budget set for a consumer whose endowment is e is

BW (e, p) = {x : p · x ≤ p · e+ p · F (x0)}

A Walrasian equilibrium consists of commodity prices p and consumption choices xi such

that

• Commodity Markets Clear∑
i

xi =
∑

i

ei +
∑

i

F (ei
0)

• Plans are Budget Feasible

xi ∈ Bw(ei, p)

• Consumers Optimize

yi ∈ B(ei, p) ⇒ ui(yi) ≤ ui(xi)
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3 Existence of Pool Equilibrium

Our model of security pools satisfies the basic consistency requirement that equilibrium

exists.

Theorem 1 (Existence of Pool Equilibrium) Every economy with collateralized secu-

rities and security pools, satisfying Assumptions 1-3 (in Section 2) admits an equilibrium.

Proof The proof follows exactly the proof of Theorem 1 in Geanakoplos and Zame (2010)

with the obvious addition of pools, pool prices, and pool purchases and sales. We leave the

(messy) details to the reader.

4 Pyramiding and Pooling

Our model incorporates three distinct processes: pyramiding (the use collateralized securities

to collateralize further securities), pooling (the combining of bundling of collateral goods

and securities to collateralize different loans) and tranching (the using collateral goods and

securities to collateralize several securities). Section 5 shows how these processes operate

when used together (in our environment) but a brief informal discussion may guide the

reader.

• To see how pyramiding could be useful, imagine an economy with one consumption

good and three states at date 1. Suppose there is a durable good (houses today) yields

consumption in quantities (2,1,1) in the three states. Agent 0 has utility for date 0

housing, agent 1 only wants to consume in state 1, and agent 2 (who is very risk averse)

wants to smooth consumption perfectly in date 1. Suppose further that in the initial

condition of society, only riskless promises (i.e., promises of the form (a, a, a) can be

written. If agent 0 owns the house and sells off a promise of (1,1,1) to agent 2, then
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agent 0 gets stuck consuming 1 in state 1 tomorrow. On the other hand, if agent 1

owns the house and sells of the promise (1,1,1) to agent 2, then the right agent gets

consumption of 1 in state 1 tomorrow, but the house is in the wrong hands. With

pyramiding, agent 0 could own the house and sell off promise (2,2,2) to agent 1. Agent

1 could use that promise – which delivers (2,1,1) – as collateral for a futher promise of

(1,1,1) to agent 2. This achieves the efficient allocation of getting 0 to live in the house,

agent 1 to consume 1 in state 1, and agent 2 to consume (1,1,1) in the three states

tomorrow. (We might think of agent h=0 as a homeowner, agent 1 as a speculator,

and agent 2 as the risk averse lender.) We see that pyramiding, combined with default,

allows for a socially superior allocation.

• why is pooling useful if everything is divisible? To see how pooling is useful,

imagine a variant of the previous example in which there are two houses and two

potential homeowners 0 and 0’. Suppose the first house pays (1,1,0) and the second

house pays (1,0,1) in the three states. The optimal allocation is achieved when 0 buys

the first house and using it as collateral sells the promise (1,1,1), thereby delivering

(1,1,0). Agent 0’ buys the second house and using it as collateral sells the promise

(1,1,1), delivering (1,0,1). Agent 1 buys both promises, pooling them together as

collateral to back the promise (1,1,1), which delivers fully and is sold to agent 2,

leaving agent 1 with the residual payoff of (1,0,0). Pooling the promises allowed for

the diversification that made the pool able to fully cover the (1,1,1) promise. Note that

the houses could not directly be pooled together, because they need to be owned by

separate homeowners. This example illustrates the power of say subprime mortgage

pools to enable homeowners to borrow the money to buy houses to live in, while

dividing the mortgage cash flows between speculators and risk averse agents. In states

2 and 3 one homeowner defaults, but at the pool level the promise is kept.4

4An example in keeping with how events unfolded over the past two years, as opposed to how they were

meant to unfold in theory, would involve a fourth state in which many both house payoffs are 0, forcing two

defaults at the homeowner level as well as default at the pool level.
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• Tranching allows the same collateral is used to back more than one loan or tranche.

With more than one loan depending on the same collateral, a seniority is required to

define the payoffs. Consider the first example in which the homeowner buys the house

and using it as collateral issues a senior promise (first mortgage) promising (1,1,1) and

a junior tranche (second mortgage) also promising (1,1,1). The senior tranche will fully

deliver (1,1,1) and be bought by agent 2, and the junior tranche will deliver (1,0,0)

and be bought by agent 1.
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5 Securitization and Efficiency

We argue here that, in a world in which all securities must be collateralized, securitiza-

tion promotes efficiency but that there are robust situations in which efficiency cannot be

obtained. To make these points we begin with a simple observation.

Theorem 2 (Net Savers) If 〈p, q,Q, (xi, ϕi, ψi,Φi,Ψi〉 is a pool equilibrium for the econ-

omy 〈(ei, ui),A,B〉 then each consumer’s future expenditures must exceed his/her unpledge-

able income in every future state; that is,

ps · xi
s ≥ ps · ei

s

for each consumer i and state s.

Proof If ps · xi
s < ps · ei

s for some consumer i and state s, then in state s, consumer i

could default on all the promises of the securities s/he sold at date 0, surrender the collateral

backing these promises, and still afford more than xi
s. This would contradict the requirement

that i’s equilibrium plan be optimal in i’s budget set. Hence ps · xi
s ≥ ps · ei

s, as asserted.

This simple theorem has a striking negative consequence for efficiency: provided we rule

out avoid corner solutions, inefficiency is a robust phenomenon – independently of consumer

preferences and the availability of securities and security pools.

Theorem 3 (Robust Inefficiency) Fix a positive social endowment e ≥ 0 and smooth

utility functions (ui) that are strictly monotone and satisfy the boundary condition.5 There

is an non-empty open subset Ω of the set of endowment profiles {(ei) :
∑
ei = e} with

the property that no collateral equilibrium from any endowment profile in Ω can be Pareto

optimal, no matter what securities and security pools are available for trade.

5That is, indifference curves through any point in the strictly positive orthant lie entirely in the strictly

positive orthant; Debreu (1972).
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Proof To be added.

On the other hand, any allocation that can be supported as a Walrasian equilibrium and

that Theorem 2 does not rule out as occurring in a collateral equilibrium can in fact be

obtained whenever “enough” securities and security pools are available. Moreover we need

only a particularly simple set of collateralized securities and a single properly constructed

pool.

For each good 0` define the security

A` = (p1 · F (e0`), e0`)

A` promises to pay the date 1 value of what a society’s endowment of 0` becomes at date 1,

collateralized by society’s endowment of 0` itself. Note that there will never be any default

on A`: deliveries will always equal promises. We refer to the securities A` as the primary

loans.

Now define a pool B = (B1, . . . , BS;χ) follows:

• χ0 = 0, χ1 = {A1, . . . , A`}

•

Bt(pt) =


∑L

`=1A
`
s(ps) if t = s

0 if t 6= s

That is, the t-tranche of B promises to pay the total of all promises on primary loans in

state s = t and nothing in any other state. For obvious reasons we refer to B as the pool of

primary loans with Arrow tranches.

Theorem 4 (Supporting Walrasian Equilibrium) If 〈p̃, (xi)〉 is a Walrasian equilib-

rium for the economy 〈(ei, ui)〉 at which each consumer is a net saver in the sense that

p̃s · (xi
s ≥ p̃s · ei

s)
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for each consumer i and state s and A is any family of collateralized securities that contains

all the primary loans B is any family of security pools that contains the pool of primary loans

with Arrow tranches, then there is an equilibrium 〈p, q,Q, (xi, ϕi, ψi,Φi,Ψi)〉 for the economy

〈(ei, ui),A, ,B〉 with the same consumptions (and the same commodity prices) as the given

Walrasian equilibrium.

Proof Suppose each consumer is a net saver. For ` = 1, . . . , L let B` = (B`1, . . . , B`S; δ0`)

be the security pool which is collateralized by one unit of the commodity 0` and for which

the s tranche B`s promises to deliver in state s the value of what one unit of commodity 0`

becomes in state s and promises to deliver nothing in states σ 6= s. That is:

B`s
σ =

 ps · Fs(δ0`) if σ = s

0 if σ 6= s

Define prices for commodities and tranches as follows:

p0` = p̃0` +
∑

s

p̃s · Fs(δ0`)

ps` = p̃s`

Q`s = ps · Fs(δ0`) (1)

For each consumer i and each state s define

ri
s = ps · [xi

s − Fi(x
i
0)]− ps · [ei

s − Fs(e
i
0)]

Note that this quantity could be positive, negative or zero. For each consumer i define the

portfolios Φi,Ψi of purchases and sales of tranches as follows:

ϕi = xi
0

ψi = xi
0

Φi`s =
x1

0

ps · Fs(x1
0

(r1
s)

+

Ψi`s =
x1

0

ps · Fs(x1
0

(−r1
s)

+ (2)
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We claim 〈p, , Q, (xi,Φi,Ψi)〉 is an equilibrium for the economy E = 〈(ei, ui), (F`)〉.

To see this note first that deliveries on tranches coincide with promises: this follows

immediately from the definitions. Moreover, for each consumer i the plan (xi,Φi,Ψi) is

in consumer i’s collateral budget set B(p,Q; ei): this follows immediately by substituting

the definitions of prices (1) and of portfolios (2) into the Walrasian budget constraints.6

We assert that, for each i, all consumption plans that that can be financed by purchases

and sales of security pools are in the Walrasian budget set BW (p̃; ei). To see this, suppose

(x̂i, ϕ̂i, Φ̂i, Ψ̂i) is in consumer i’s budget set B(p,Q; ei). The date 0 and state s budget

constraints are

p0 · x̂0 +Q · Φ̂ ≤ p0 · e0 +Q · Ψ̂

ps · x̂s + Del(Φ̂; s, p) ≤ ps · es + ps · Fs(x̂0)

+ Del(Ψ̂; s, p)

Substituting the definitions of spot prices and security deliveries, summing and doing some

algebra yields

p̃0 · x̂0 +
∑

p̃s · x̂s ≤ p̃0 · e0 +
∑

p̃s · es

which is the Walrasian budget constraint.

A simple example illustrates Theorem 4 and the reason why pools are required.

Example 1 (Pools and Walrasian Equilibrium) There are two states of nature, two

goods (Food and Housing), and four consumers. Each consumer assigns equal probability to

the two states in date 1. Consumer 1 owns the housing and is risk neutral; Consumer 2 likes

housing much more than other consumers; Consumers 3, 4 care only about food and have

6We do not assert that every consumption plan in the Walrasian budget sets can be financed by appropri-

ate portfolios of security purchases and sales – and in general, this is not so – but only that these particular

consumption plans can be so financed.
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an insurance motive. We take the supply of housing h ∈ [0, 4] as a parameter. Endowments

and utilities are:

e1 = (8, h; 32, 0; 32, 0)

u1 = x0F + x0H +
1

2
[x1F + x1H ] +

1

2
[x2F + x2H ]

e2 = (9, 0; 72, 0; 72, 0)

u2 = log(x0F ) + 4x0H +
1

2
[x1F + 4x1H ] +

1

2
[x2F + 4x2H ]

e3 = (12, 0; 8, 0; 0, 0)

u3 = log(x0F ) +
1

2
log(x1F ) +

1

2
log(x2F )

e4 = (12, 0; 0, 0; 8, 0)

u4 = log(x0F ) +
1

2
log(x1F ) +

1

2
log(x2F )

A simple computation shows that Walrasian prices and utilities are unique but equilibrium

allocations are indeterminate:

p̃ = (1, 8; 1/2, 2; 1/2, 2))

x1 = (24, 0; 24 + 8h+ ζ, 0; 24 + 8h− ζ, 0)

x2 = (1, h; 72− 8h− ζ, h; 72− 8h+ ζ, h)

x3 = (8, 0; 8, 0; 8, 0)

x4 = (8, 0; 8, 0; 8, 0)

for ζ ∈ [−min(24 + 8h, 72− 8h),min(24 + 8h, 72− 8h)].

For which values of h, ζ can this equilibrium be supported as a pool equilibrium for

an appropriate choice of securities and security pools? In view of Theorems 2 and 4, it

is necessary and sufficient that each consumer be a net saver. For Consumers 3, 4 this

requirement is satisfied independently of h, ζ; for Consumers 1, 2 this requirement entails
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the inequalities:

24 + 8h+ ζ ≥ 32

24 + 8h− ζ ≥ 32

(1/2)(72− 8h− ζ) + 2h ≥ 32

(1/2)(72− 8h+ ζ) + 2h ≥ 32

which simplify to

8h+ ζ ≥ 8

8h− ζ ≥ 8

8 ≥ 4h− ζ

8 ≥ 4h+ ζ

This region in h, ζ space is shown as the shaded rhombus in Figure 1. Notice in particular

that if h /∈ [1, 2] then no Walrasian equilibrium can be supported as a pool equilibrium no

matter what securities and security pools are available.

Figure 1 about here

To understand why these inequalities characterize supportability as a pool equilibrium,

let us focus on the case ζ = 0. Note first that for h ∈ [1, 2] and ζ = 0 the pool equilibrium

is easy to describe: Consumer 2 borrows to buys all the housing, using the housing to

collateralize the loan; Consumer 1 uses the housing loans to collateralize a security pool

with two tranches, each promising to deliver the value of 8 units of food in each state;

Consumers 3 and 4 each buy one of these tranches.

Now consider what happens if h /∈ [1, 2]. If h < 1 then Consumer 2 is rich enough at date

0 to pay for all the housing from her endowment and still have more than 1 unit of food,

so she will wish to save. For Consumer 2 to save some other Consumer must lend. Because

lending must be collateralized by housing, some other Consumer must hold housing – which

no other Consumer wishes to do. If h > 2 Consumer 2 will need to borrow 8h − 8 units of
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account to buy housing in date 0. Because borrowing must be collateralized by housing and

the date 1 value of housing is 4, no one will lend more than 4 units of account per unit of

housing collateral, so Consumer 2 will not be able to borrow more than 4h units of account;

this is not enough. In short, if h < 1 then Consumer 2 is too rich and if h > 2 then Consumer

2 is too poor.

Finally, to see why collateralized securities alone are not sufficient – and pools are neces-

sary – note that Consumers 3, 4 must buy securities that pay in different states; hence some

other agent(s) must sell these securities. Because selling securities must be collateralized,

each of these loans must be collateralized by at least two distinct houses. Security pools “

solve” this problem by making it possible for the same houses to collateralize both sales. ♦
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6 Conclusion

When securities must be collateralized, the shortage of collateral leads to financial innova-

tions that stretch the available collateral. These financial innovations (pooling, pyramiding

and tranching) promote social welfare. However, even after all possible financial innova-

tions, the requirement that lending be collateralized means that robust inefficiency is an

inescapable possibility.

The model offered here abstracts away from transaction costs, informational asymmetries,

and many other frictions that play an important role in real markets. It also restricts

attention to a two-date world, and so does not address issues such as default at intermediate

dates. All these are important questions for later work.
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